
Peter J. Landin (1930–2009)

Olivier Danvy

Department of Computer Science
Aarhus University∗

Time-stamp: <2009-06-18 17:37:16 danvy>

Abstract

This note is a prelude to a forthcoming special issue of HOSC
dedicated to Peter Landin’s memory.

One of the founding fathers of everything lambda in programming lan-
guages passed away in June 2009: Peter J. Landin.
Peter Landin spent the last years of his life as Professor Emeritus at

Queen Mary, where his colleagues included Edmund Robinson and Pe-
ter O’Hearn. Over the last decade, he served in the advisory board of
HOSC and thus received a complimentary copy of each issue. HOSC pub-
lished two of his articles: a tribute to Christopher Strachey [21] in 2000
and a reprint of his 1965 technical note “A generalization of jumps and la-
bels” [20] in 1998, for which Hayo Thielecke wrote an introduction [30].
In the editorial of our 1998 issue [11], Carolyn Talcott and I presented this
reprint as follows:

This paper describes a real conceptual discovery, namely the
idea to make control facilities first-class entities in a program-
ming language, through the “J operator.” Its exposition is typi-
cal of the simplicity, directness, clarity and honesty of Landin’s
writing that makes his articles such a pleasure to read.

∗Aabogade 34, DK-8200 Aarhus N, Denmark.
Email: danvy@cs.au.dk

1



This spring, for the last time, I sent him a copy of a scientific com-
pliment: a joint re-visitation with Ken Shan and Ian Zerny of his direct-
style embedding of Algol 60 into applicative expressions with the J oper-
ator [15]. There, we retarget his embedding to the Rhino implementation
of JavaScript with continuation objects. Indeed, whereas call/cc captures
the current continuation, the J operator captures the continuation of the
caller of the current method [7]. This feature fitted Landin’s embedding
then and it fits a JavaScript implementation with a local stack for each
method now [3]. Playfully, the title of our re-visitation is thus “J is for
JavaScript” [10].

—

In 2004, I paid Peter Landin a visit at the occasion of Josh Berdine’s PhD
defense [2] and found him in his office, patiently helping an undergradu-
ate student. In turn, I patiently waited for him to be done with the student
before presenting himmy rational deconstruction of his SECDmachine [5].
I then showed him how the SECDmachine could be put into defunctional-
ized form [9,25] and could then be refunctionalized [8] into a continuation-
passing evaluator à la Lockwood Morris [22]. I thus enthusiastically con-
cluded how much the SECD machine made sense, and that even though
he might not have discovered continuation-passing style (see Appendix),
defunctionalization and refunctionalization provided a concrete argument
why his name should be added to the list of the discoverers of continua-
tions [26]. Throughout, he was as patient with me as with the undergradu-
ate student, and in the end he smiled, his eyes sparkled amusedly, and then
he made some incredibly modest comments to the effect that he had been
lucky.
Peter Landin was indeed so modest that in 1998, he did not attend the

MFPS XIV session held in his honor at Queen Mary,1 eliciting Dana Scott’s
quip as towhether Peter Landinwas the Bourbaki of Computer Science. He
did, however, get to read hardcopies of the slides displayed at his session.

—

I initially got in touchwith Peter Landin in 1996 by e-mail and by phone
and we met for the first time in January 1997 in Paris, at the occasion of the
SecondACMSIGPLANWorkshop on Continuations [4], which I was chair-
ing and where he gave a keynote speech. For the proceedings, he wrote

1<http://www.dcs.qmul.ac.uk/~edmundr/mfps/>

2



the masterfully idiosyncratic “Histories of Discoveries of Continuations:
Belles-Lettres with Equivocal Tenses” [19].2

After his keynote speech at CW’97, he handed out copies of some of
his old research reports [16, 17]. There naturally was a stampede, and to
Olin Shivers who asked his copies to be autographed he said “I am not the
Beatles,” and then signed them.
When introducing him before his keynote speech, I pointed out that

independently of all his accomplishments, he was a rare breed of computer
scientist with a control operator as his middle name (which is “John” and
is abbreviated “J” in his publications). He flashed a look at me that to this
day makes me wonder whether it was such a good idea to mention this
coincidence at all.
My favorite moment with Peter Landin occurred when we met: he was

arriving from London to attend CW’97, I picked him up at the train station,
and together with John Reynolds and Andrzej Filinski, we sat at the terrace
of a French café. I took the opportunity of a pause in the conversation to
venture the question as towhether in theirmind, the evaluation order of the
meta-language of denotational semantics was call by value or call by name.
Peter and John immediately, and simultaneously, answered “call by value
of course” (for Peter) and “call by name of course” (for John). For a second
of eternity, they looked at each other. Then it was like they were mentally
telling each other “let’s not have this discussion again” and the universe
resumed its course. The rest of the evening was warm and pleasant, the
following day was as wonderful as each continuation workshop somehow
manages to be, and eventually I took him back to the train station.

—

What happened before is history: his impression that computer sci-
ence was turning “too theoretical” for him, his quiet move away from the
programming-language limelight, and his ascension to programming-lan-
guage legend. Peter Landin was indeed gifted with an uncanny, almost
prophetic, computational sense. To (boldly) quote from the introduction of
my rational deconstruction of his SECD machine [5]:

Forty years ago, Peter Landin wrote a profoundly influential ar-
ticle, “The Mechanical Evaluation of Expressions” [14], where,

2Including “So these continuations have continuations.” which beautifully anticipates
the CPS hierarchy [6].

3



in retrospect, he outlined a substantial part of the functional-
programming research programme for the following decades.
This visionary article stands out for advocating the use of the
λ-calculus as a meta-language and for introducing the first ab-
stract machine for the λ-calculus (i.e., in Landin’s terms, ap-
plicative expressions), the SECD machine. However, and in ad-
dition, it also introduces the notions of ‘syntactic sugar’ over a
core programming language; of ‘closure’ to represent functional
values; of circularity to implement recursion; of thunks to de-
lay computations; of delayed evaluation; of partial evaluation;
of disentangling nested applications into where-expressions at
preprocessing time; of what has since been called de Bruijn in-
dices; of sharing; of what has since been called graph reduction;
of call by need; of what has since been called strictness analysis;
and of domain-specific languages—all concepts that are ubiqui-
tous in programming languages today.

And did I mention that together with his embedding of Algol 60 into
applicative expressions, his 700 article [18] is generally recognized as the
origin of domain-specific languages today?
On somany fundamental and tastefulways Peter Landinwas unerringly

right. He has now passed away, but his writings stay and his discoveries,
his inventions, and his middle name live on.

—

Appendix: As John Reynolds pointed out in our columns [26], Peter Landin
did not discover continuation-passing style—instead, he invented control
operators and first-class continuations:

Algol programs
in direct style

direct-style

embedding
//

CPS

embedding

&&M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

CPS
transformation

��
�

�

�

�

�

�

�

�

�

�

applicative expressions
in direct style with J

CPS
transformation

��
�

�

�

�

�

�

�

�

�

�

Algol programs
in CPS

direct-style

embedding
// applicative expressions

in CPS

4



The left vertical arrow is a tour de force due to Adriaan van Wijngaar-
den [31] and James Morris [23]. The top horizontal arrow is due to Pe-
ter Landin [15]. (“Applicative expressions” is Peter Landin’s words for
“λ-terms.”) The diagonal arrow is variously due to Christopher Strachey
and Christopher P. Wadsworth [29] and to Kamal Abdali [1], and its un-
staged version is due to Lockwood Morris in the form of a definitional in-
terpreter in continuation-passing style [22, 25]. In the pure case (i.e., with-
out the J operator), the right vertical arrow is due to Michael Fischer [12]
and has been formalized by Gordon Plotkin [24] and put to compiler use
by Guy Steele [28], who extended it to the impure case and introduced the
acronym “CPS” and the term “CPS transformation.” The bottom horizon-
tal arrow is obvious. In Landin’s direct-style embedding, label declarations
are mapped to an occurrence of the J operator that gives rise to a ‘program
closure’ (known today as a “first-class continuation” [13]), and jumps to a
label are mapped to an application of the program closure lexically asso-
ciated to this label. Peter Landin used to joke that he had smuggled the J
operator into a galley proof [15].

“In those days [the 1960’s],
many successful projects started out

as graffitis on a beer mat
in a very, very smoky pub.”

Peter J. Landin, 2004

Acknowledgments: This note benefited from Irène Danvy, Julia Lawall,
Karoline Malmkjær, and Ian Zerny’s sensible proof-reading.

References

[1] S. Kamal Abdali. A lambda-calculus model of programming lan-
guages, part II: Jumps and procedures. Computer Languages, 1(4):303–
320, 1976.

[2] Josh Berdine. Linear and Affine Typing of Continuation-Passing Style.
PhD thesis, Queen Mary, University of London, 2004.

[3] John Clements, Ayswarya Sundaram, and David Herman. Imple-
menting continuation marks in JavaScript. In Will Clinger, editor, Pro-

5



ceedings of the 2008 ACM SIGPLAN Workshop on Scheme and Functional
Programming, pages 1–9, Victoria, British Columbia, September 2008.

[4] Olivier Danvy, editor. Proceedings of the Second ACM SIGPLAN
Workshop on Continuations (CW’97), Technical report BRICS NS-96-13,
Aarhus University, Paris, France, January 1997.

[5] Olivier Danvy. A rational deconstruction of Landin’s SECD ma-
chine. In Clemens Grelck, Frank Huch, Greg J. Michaelson, and Phil
Trinder, editors, Implementation and Application of Functional Languages,
16th International Workshop, IFL’04, number 3474 in Lecture Notes in
Computer Science, pages 52–71, Lübeck, Germany, September 2004.
Springer-Verlag. Recipient of the 2004 Peter Landin prize. Extended
version available as the research report BRICS RS-03-33.

[6] Olivier Danvy and Andrzej Filinski. Abstracting control. In Mitchell
Wand, editor, Proceedings of the 1990 ACM Conference on Lisp and Func-
tional Programming, pages 151–160, Nice, France, June 1990. ACM
Press.

[7] Olivier Danvy and Kevin Millikin. A rational deconstruction of
Landin’s SECD machine with the J operator. Logical Methods in Com-
puter Science, 4(4:12):1–67, November 2008.

[8] Olivier Danvy and Kevin Millikin. Refunctionalization at work. Sci-
ence of Computer Programming, 74(8):534–549, 2009. Extended version
available as the research report BRICS RS-08-04.

[9] Olivier Danvy and Lasse R. Nielsen. Defunctionalization at work. In
Harald Søndergaard, editor, Proceedings of the Third International ACM
SIGPLAN Conference on Principles and Practice of Declarative Program-
ming (PPDP’01), pages 162–174, Firenze, Italy, September 2001. ACM
Press. Extended version available as the research report BRICS RS-01-
23.

[10] Olivier Danvy, Chung-chieh Shan, and Ian Zerny. J is for Javascript:
A direct-style correspondence between Algol-like languages and
Javascript using first-class continuations. In Walid Taha, editor, Pro-
ceedings of the IFIP Working Conference on Domain Specific Languages,
number 5658 in Lecture Notes in Computer Science, Oxford, UK, July
2009. IFIP, Springer. To appear.

6



[11] Olivier Danvy and Carolyn L. Talcott, editors. Special Issue on the Sec-
ond ACM Workshop on Continuations (CW’97), Part I, volume 11, num-
ber 2 of Higher-Order and Symbolic Computation, 1998.

[12] Michael J. Fischer. Lambda-calculus schemata. LISP and Symbolic
Computation, 6(3/4):259–288, 1993. Available at <http://www.brics.dk/

~hosc/vol06/03-fischer.html>. A preliminary version was presented
at the ACM Conference on Proving Assertions about Programs, SIG-
PLAN Notices, Vol. 7, No. 1, January 1972.

[13] Daniel P. Friedman and Christopher T. Haynes. Constraining control.
In Mary S. Van Deusen and Zvi Galil, editors, Proceedings of the Twelfth
Annual ACM Symposium on Principles of Programming Languages, pages
245–254, New Orleans, Louisiana, January 1985. ACM Press.

[14] Peter J. Landin. The mechanical evaluation of expressions. The Com-
puter Journal, 6(4):308–320, 1964.

[15] Peter J. Landin. A correspondence between Algol 60 and Church’s
lambda notation, Parts 1 and 2. Communications of the ACM, 8:89–101
and 158–165, 1965.

[16] Peter J. Landin. A generalization of jumps and labels. Research re-
port, UNIVAC Systems Programming Research, 1965. Reprinted in
Higher-Order and Symbolic Computation 11(2):125–143, 1998, with a
foreword [30].

[17] Peter J. Landin. Getting rid of labels. Research report, UNIVAC Sys-
tems Programming, July 1965.

[18] Peter J. Landin. The next 700 programming languages. Communica-
tions of the ACM, 9(3):157–166, 1966.

[19] Peter J. Landin. Histories of discoveries of continuations: Belles-lettres
with equivocal tenses. In Danvy [4], pages 1:1–9.

[20] Peter J. Landin. A generalization of jumps and labels. Higher-Order
and Symbolic Computation, 11(2):125–143, 1998. Reprinted from a tech-
nical report, UNIVAC Systems Programming Research (1965), with a
foreword [30].

[21] Peter J. Landin. My years with Strachey. Higher-Order and Symbolic
Computation, 13(1/2):75–76, 2000.

7



[22] F. Lockwood Morris. The next 700 formal language descriptions. Lisp
and Symbolic Computation, 6(3/4):249–258, 1993. Reprinted from a
manuscript dated 1970.

[23] James H. Morris Jr. A bonus from van Wijngaarden’s device. Commu-
nications of the ACM, 15(8):773, August 1972.

[24] Gordon D. Plotkin. Call-by-name, call-by-value and the λ-calculus.
Theoretical Computer Science, 1:125–159, 1975.

[25] John C. Reynolds. Definitional interpreters for higher-order program-
ming languages. In Proceedings of 25th ACMNational Conference, pages
717–740, Boston, Massachusetts, 1972. Reprinted in Higher-Order and
Symbolic Computation 11(4):363-397, 1998, with a foreword [27].

[26] John C. Reynolds. The discoveries of continuations. Lisp and Symbolic
Computation, 6(3/4):233–247, 1993.

[27] John C. Reynolds. Definitional interpreters revisited. Higher-Order and
Symbolic Computation, 11(4):355–361, 1998.

[28] Guy L. Steele Jr. Rabbit: A compiler for Scheme. Master’s thesis, Ar-
tificial Intelligence Laboratory, Massachusetts Institute of Technology,
Cambridge, Massachusetts, May 1978. Technical report AI-TR-474.

[29] Christopher Strachey and Christopher P. Wadsworth. Continuations:
A mathematical semantics for handling full jumps. Technical Mono-
graph PRG-11, Oxford University Computing Laboratory, Program-
ming Research Group, Oxford, England, 1974. Reprinted in Higher-
Order and Symbolic Computation 13(1/2):135–152, 2000, with a fore-
word [32].

[30] Hayo Thielecke. An introduction to Landin’s “A generalization of
jumps and labels”. Higher-Order and Symbolic Computation, 11(2):117–
124, 1998.

[31] Adriaan van Wijngaarden. Recursive definition of syntax and seman-
tics. In T. B. Steel, Jr., editor, Formal Language Description Languages for
Computer Programming, pages 13–24. North-Holland, 1966.

[32] Christopher P. Wadsworth. Continuations revisited. Higher-Order and
Symbolic Computation, 13(1/2):131–133, 2000.

8


